Support Vector Machine in Prediction of Building Energy Demand Using Pseudo Dynamic Approach

نویسندگان

  • Subodh Paudel
  • Phuong H. Nguyen
  • Wil L. Kling
  • Mohamed Elmitri
  • Bruno Lacarrière
  • Olivier Le Corre
چکیده

Building’s energy consumption prediction is a major concern in the recent years and many efforts have been achieved in order to improve the energy management of buildings. In particular, the prediction of energy consumption in building is essential for the energy operator to build an optimal operating strategy, which could be integrated to building’s energy management system (BEMS). This paper proposes a prediction model for building energy consumption using support vector machine (SVM). Datadriven model, for instance, SVM is very sensitive to the selection of training data. Thus the relevant days data selection method based on Dynamic Time Warping is used to train SVM model. In addition, to encompass thermal inertia of building, pseudo dynamic model is applied since it takes into account information of transition of energy consumption effects and occupancy profile. Relevant days data selection and whole training data model is applied to the case studies of Ecole des Mines de Nantes, France Office building. The results showed that support vector machine based on relevant data selection method is able to predict the energy consumption of building with a high accuracy in compare to whole data training. In addition, relevant data selection method is computationally cheaper (around 8 minute training time) in contrast to whole data training (around 31 hour for weekend and 116 hour for working days) and reveals realistic control implementation for online system as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH

Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...

متن کامل

Carbon Monoxide Prediction in the Atmosphere of Tehran Using Developed Support Vector Machine

Air quality prediction is highly important in view of the health impacts caused by exposure to air pollutants in urban air. This work has presented a model based on support vector machine (SVM) technique to predict daily average carbon monoxide (CO) concentrations in the atmosphere of Tehran. Two types of SVM regression models, i.e. -SVM and -SVM techniques, were used to predict average daily C...

متن کامل

Online Voltage Stability Monitoring and Prediction by Using Support Vector Machine Considering Overcurrent Protection for Transmission Lines

In this paper, a novel method is proposed to monitor the power system voltage stability using Support Vector Machine (SVM) by implementing real-time data received from the Wide Area Measurement System (WAMS). In this study, the effects of the protection schemes on the voltage magnitude of the buses are considered while they have not been investigated in previous researches. Considering overcurr...

متن کامل

A Wavelet Support Vector Machine Combination Model for Daily Suspended Sediment Forecasting

Abstract In this study, wavelet support vector machine (WSWM) model is proposed for daily suspended sediment (SS) prediction. The WSVM model is achieved by combination of two methods; discrete wavelet analysis and support vector machine (SVM). The developed model was compared with single SVM. Daily discharge (Q) and SS data from Yadkin River at Yadkin College, NC station in the USA were used. I...

متن کامل

PREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM

The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1507.05019  شماره 

صفحات  -

تاریخ انتشار 2015